SEQUENCE LISTING											
<110>	WALLACH, David BOLDIN, Mark MALININ, Nikola	i									
<120>	MODULATORS OF I SURVIVAL PATHWA		INFLAMMATION	, CELL DEATH AND CELL							
<130>	WALLACH=24										
<140> <141>	09/445,223 1999-12-06										
<150> <151>	IL 121011 1997-06-05										
<150> <151>	IL 121199 1997-06-30										
<150> <151>	IL 121746 1997-09-11										
<150> <151>	PCT/IL98/00255 1998-06-01										
<160>	5										
<170>	PatentIn versio	n 3.3									
<210> <211> <212> <213>	1 540 PRT Homo sapiens										
<400>	1										
Met As 1	n Gly Glu Ala Il 5	e Cys Ser Ala	Leu Pro Thr 10	Ile Pro Tyr His 15							
Lys Le	u Ala Asp Leu Ar 20		Arg Gly Ala								
Ser Se	r Ala Arg His Al 35	a Asp Trp Arc 40	7 Val Gln Val	Ala Val Lys His 45							
Leu Hi 50	s Ile His Thr Pr	o Leu Leu Asp 55	o Ser Glu Arg 60	Lys Asp Val Leu							
Arg Gl 65	u Ala Glu Ile Le 70	u His Lys Ala	Arg Phe Ser 75	Tyr Ile Phe Pro 80							
Ile Le	u Gly Ile Cys As	n Glu Pro Glu	ı Phe Leu Gly	Ile Val Thr Glu							

SEQUENCE LISTING

				80					90					95	
Tyr	Met	Pro	Asn 100	Gly	Ser	Leu	Asn	Glu 105	Leu	Leu	His	Arg	Lys 110	Thr	Glu
Tyr	Pro	Asp 115	Val	Ala	Trp	Pro	Leu 120	Arg	Phe	Arg	Ile	Leu 125	His	Glu	Ile
Ala	Leu 130	Gly	Val	Asn	Tyr	Leu 135	His	Asn	Met	Thr	Pro 140	Pro	Leu	Leu	His
His 145	Asp	Leu	Lys	Thr	Gln 150	Asn	Ile	Leu	Leu	Asp 155	Asn	Glu	Phe	His	Val 160
Lys	Ile	Ala	Asp	Phe 165	Gly	Leu	Ser	Lys	Trp 170	Arg	Met	Met	Ser	Leu 175	Ser
Gln	Ser	Arg	Ser 180	Ser	Lys	Ser	Ala	Pro 185	Glu	Gly	Gly	Thr	Ile 190	Ile	Tyr
Met	Pro	Pro 195	Glu	Asn	Tyr	Glu	Pro 200	Gly	Gln	Lys	Ser	Arg 205	Ala	Ser	Ile
Lys	His 210	Asp	Ile	Tyr	Ser	Tyr 215	Ala	Val	Ile	Thr	Trp 220	Glu	Val	Leu	Ser
Arg 225	Lys	Gln	Pro	Phe	Glu 230	Asp	Val	Thr	Asn	Pro 235	Leu	Gln	Ile	Met	Tyr 240
	Val			245					250					255	
_	Asp		260					265					270		_
	Ala	275					280					285			
	Leu 290					295					300				
Ala 305	Val	тте	GIN	Leu	Lys 310	цуз	Inr	тÀг	Leu	Gln 315	ser	va⊥	ser	ser	Ala 320

Ile His	Leu Cys	3 Asp L 325	ys Lys	Lys	Met	Glu 330	Leu	Ser	Leu	Asn	Ile 335	Pro
Val Asn	His Gly 34(ln Glu	Glu	Ser 345	Cys	Gly	Ser	Ser	Gln 350	Leu	His
Glu Asn	Ser Gly 355	v Ser P	ro Glu	Thr 360	Ser	Arg	Ser	Leu	Pro 365	Ala	Pro	Gln
Asp Asn 370	Asp Phe	e Leu S	er Arg 375	_	Ala	Gln	Asp	Суз 380	Tyr	Phe	Met	Lys
Leu His 385	His Cys		ly Asn 90	His	Ser	Trp	Asp 395	Ser	Thr	Ile	Ser	Gly 400
Ser Gln	Arg Ala	Ala P 405	he Cys	Asp	His	Lys 410	Thr	Thr	Pro	Cys	Ser 415	Ser
Ala Ile	Ile Asr 42(eu Ser	Thr	Ala 425	Gly	Asn	Ser	Glu	Arg 430	Leu	Gln
Pro Gly	Ile Ala 435	ı Gln G	ln Trp	Ile 440	Gln	Ser	Lys	Arg	Glu 445	Asp	Ile	Val
Asn Gln 450	Met Thi	Glu A	la Cys. 455		Asn	Gln	Ser	Leu 460	Asp	Ala	Leu	Leu
Ser Arg 465	Asp Lei		et Lys 70	Glu	Asp	Tyr	Glu 475	Leu	Val	Ser	Thr	Lys 480
Pro Thr	Arg Thi	Ser L 485	ys Val	Arg	Gln	Leu 490	Leu	Asp	Thr	Thr	Asp 495	Ile
Gln Gly	Glu Glu 500		la Lys	Val	Ile 505	Val	Gln	Lys	Leu	Lys 510	Asp	Asn
Lys Gln	Met Gly 515	' Leu G	ln Pro	Tyr 520	Pro	Glu	Ile	Leu	Val 525	Val	Ser	Arg
Ser Pro 530	Ser Lei	ı Asn L	eu Leu 535		Asn	Lys	Ser	Met 540				

<210> 2

<400> 2 ggccattatg gatggatggg cggcgctacg gcgttggcac cagtctctag aaaagaagtc 60 agetetggtt eggagaagea geggetggeg tgggeeatee ggggaatggg egeeetegtg 120 acctagtgtt gcggggcaaa aagggtcttg ccggcctcgc tcgtgcaggg gcgtatctgg 180 gcgcctgagc gcggcgtggg agccttggga gccgccgcag caggggggcac acccggaacc 240 ggcctgagcg cccgggacca tgaacgggga ggccatctgc agcgccctgc ccaccattcc 300 360 ctaccacaaa ctcgccgacc tgcgctacct gagccgcggc gcctctggca ctgtgtcgtc cgcccgccac gcagactggc gcgtccaggt ggccgtgaag cacctgcaca tccacactcc 420 gctgctcgac agtgaaagaa aggatgtttt aagagaagct gaaattttac acaaagctag 480 540 atttagttac atttttccaa ttttgggaat ttgcaatgag cctgaatttt tgggaatagt tactgaatac atgccaaatg gatcattaaa tgaactccta cataggaaaa ctgaatatcc 600 tgatgttgct tggccattga gatttcgcat cctgcatgaa attgcccttg gtgtaaatta 660 720 cctgcacaat atgactcctc ctttacttca tcatgacttg aagactcaga atatcttatt 780 ggacaatgaa tttcatgtta agattgcaga ttttggttta tcaaagtggc gcatgatgtc 840 cctctcacag tcacgaagta gcaaatctgc accagaagga gggacaatta tttatatgcc 900 acctgaaaac tatgaacctg gacaaaaatc aagggccagt atcaagcacg atatatatag 960 ctatgcagtt atcacatggg aagtgttatc cagaaaacag ccttttgaag atgtcaccaa 1020 tcctttgcag ataatgtata gtgtgtcaca aggacatcga cctgttatta atgaagaaag tttgccatat gatatacctc accgagcacg tatgatctct ctaatagaaa gtggatgggc 1080 1140 acaaaatcca gatgaaagac catctttctt aaaatgttta atagaacttg aaccagtttt gagaacattt gaagagataa cttttcttga agctgttatt cagctaaaga aaacaaagtt 1200 acagagtgtt tcaagtgcca ttcacctatg tgacaagaag aaaatggaat tatctctgaa 1260 1320 catacctgta aatcatggtc cacaagagga atcatgtgga tcctctcagc tccatgaaaa tagtggttct cctgaaactt caaggtccct gccagctcct caagacaatg atttttatc 1380 1440 tagaaaagct caagactgtt attttatgaa gctgcatcac tgtcctggaa atcacagttg 1500 ggatagcacc atttctggat ctcaaagggc tgcattctgt gatcacaaga ccactccatg ctcttcagca ataataaatc cactctcaac tgcaggaaac tcagaacgtc tgcagcctgg 1560 1620 tatagcccag cagtggatcc agagcaaaag ggaagacatt gtgaaccaaa tgacagaagc

<211> 2098 <212> DNA <213> Homo sapiens

ctgccttaac cagtcgctag atgcccttct gtccagggac ttgatcatga aagaggacta 1680 tgaacttgtt agtaccaagc ctacaaggac ctcaaaagtc agacaattac tagacactac 1740 tgacatccaa ggagaagaat ttgccaaagt tatagtacaa aaattgaaag ataacaaaca 1800 aatgggtctt cagcettace eggaaataet tgtggtttet agateaceat etttaaattt 1860 acttcaaaat aaaagcatgt aagtgactgt ttttcaagaa gaaatgtgtt tcataaaagg 1920 atatttatat ctctgttgct ttgacttttt ttatataaaa tccgtgagta ttaaagcttw 1980 awwraargkt ctttsrktaa atattagtct ccctccatga cactgcagta tttttttaa 2040 2098 <210> 3 <211> 4 <212> PRT <213> Artificial <220> <223> Synthetic <220> <221> misc_feature <222> (1)..(1) <223> Residue at postion 1 is modified by an acetyl group. <220> <221> misc_feature <222> $(4) \dots (4)$ <223> Residue at postion 4 is modified by a-(4-methyl-coumaryl-7-amide). <220> <221> misc_feature <222> $(4) \dots (4)$ <223> Residue at postion 4 is modified by an AC-DEVD-AMC group. <400> 3 Asp Glu Val Asp 1 <210> 4 30 <211> <212> DNA <213> Artificial <220> <223> synthetic <400> 4

cagaattcca gagtgtttca agtgccattc

<210> 5 <211> 30 <212> DNA <213> Artificial <220> <223> synthetic <400> 5 aactcgagac ttacatgctt ttattttgaa

30